<u>シ ラ バ ス</u>

教 科	科目	単位数	学年	コース	組
理科	物理基礎	2	1		1~10

教科	物理基礎(数研出版)	副教	セミナー物理基礎+物理(第一学習社)
書		材材	

科目の目標

物理的な現象に対する探究心を高め、目的意識をもって観察、実験などを行い、物理学的に探究する能力と

態度を身に着けるとともに、物理学の基本的な概念や原理・法則の理解を深め、科学的な自然観を修得する。

物理的な現象に対して興味・関心を高め、知的好奇心をもって、主体的に解決しようとする意欲を高める。

科目の概

要

物理基礎分野の力学、熱の各単元について学ぶ。

発展的内容として、物理分野の平面運動、剛体にはたらく力のつりあいについて学ぶ。

	観点別評価					
3 観 点	○「知識・技能」	○「思考力・判断力・表現力」	○「主体的に学びに向かう態度」			
10 の カ	①「知力・学力」	②「課題対応力」 ③「論理的思考力」 ④「原因分析力」 ⑤「傾聴力」 ⑥「受信·発信力」	⑦「協働力」 ⑧「行動力」 ⑨「自己管理能力」 ⑩「自己実現力」			
観点の評価	物理問題の基本的な概念や原理・法則を体系的に理解するともに、事象を科学的に解釈したり、表現・処理したりする技能を身に付ける。	自然現象を多面的に捉え,論理的に考察することができる。また、実験結果から帰納的に考察することができる。事象の特徴を的確に表現することができる。表・式・グラフを相互に関連付けて考察するとともに,適切な手法を選択しながら分析を行い,問題の解決のための過程や結果を判断することができる。				
評価の方法	定期試験の得点	定期試験の得点および課題提出や出席 状況等を含めた総合評価	課題提出や出席の状況等			

<u>シ ラ バ ス</u>

	学習	計画
学期	学習内容(単元)	単 元 別 学 習 目 標
	第1編 運動とエネルギー 第1章 運動の表し方 1. 速度 2. 加速度 3. 落体の運動	・有効数字の概念とその取り扱い方を学ぶ。 ・速さと速度の違いを理解する。同時にスカラー 量とベクトル量の概念を理解する。 ・加速度の概念を学び、等加速度直線運動の 計算の仕方を学ぶ。
1		・平面空間の運動はベクトルを用いて計算する ことを学習する。
学	【1学期 中間試験】 5月19日~22日 第1編 運動とエネルギー 第1章 運動の表し方 3. 落体の運動 第2章 運動の法則	・重力加速度の存在を学び、落体の運動は 等加速度直線運動から考えることができることを 理解する。 ・運動状態を変化させる力の存在を学ぶ。また、
期	1. 力とそのはたらき 2. 力のつりあい	力のつりあい状態を理解する。 ・ベクトルを用いた合力の計算を学ぶ。
	【1学期 期末試験】 7月1日~7日	
	第2章 運動の法則 3. 運動の法則 4. 摩擦を受ける運動 5. 液体や気体から受ける力 <発展>剛体にはたらく力のつりあい	・運動の法則を学び、運動方程式より力と 加速度の関係を理解する。 ・摩擦力や空気抵抗等の、物体の運動を妨げる 力の存在を学ぶ。 ・水圧や浮力を学び、流体中に存在する物体の
2	【2学期 中間試験】 10月14日~17日	運動を理解する。 ・力のモーメントを学び、剛体のつりあい条件を 理解する。
学	第1編 運動とエネルギー 第3章 仕事と力学的エネルギー 1. 仕事 2. 運動エネルギー 3. 位置エネルギー	・運動エネルギーと仕事の関係性を理解する。 ・保存力と仕事、位置エネルギーの概念を 理解する。
期	4. 力学的エネルギーの保存 第1編 力と運動 第4章 運動量の保存 1. 運動量と力積	・力学的エネルギーが保存する場合としない場合の違いを理解し、それぞれの場合について計算方法を理解する。・運動量の変化が、その間に加えられた力積に等しくなることを理解する。
	【2学期 期末試験】 12月1日~5日	
3	第1編 力と運動 第4章 運動量の保存 2. 運動量保存則 3. 反発係数	・外力が加えられることがないならば運動量保存 則が成りたつことを理解する。 ・熱運動を学び、エネルギー保存の考え方よ
学期	第2編 熱 第1章 熱とエネルギー 1. 熱と物質の状態 2. 熱と仕事	り熱量保存の概念を理解する。 ・物質の状態変化とそれに関わる潜熱の概念を 理解する。
, ;∖ /]	【3学期 学年末試験】 3月4日~9日	